Bugzilla – Attachment 47488 Details for
Bug 37889
Adapt smoothing with splines to ODF1.2
Home
|
New
|
Browse
|
Search
|
[?]
|
Reports
|
Help
|
New Account
|
Log In
[x]
|
Forgot Password
Login:
[x]
[patch]
patch for Splines.cxx against LO 3.4.0.2
Splines_cxx.patch (text/plain), 38.47 KB, created by
Regina Henschel
on 2011-06-03 12:12:41 UTC
(
hide
)
Description:
patch for Splines.cxx against LO 3.4.0.2
Filename:
MIME Type:
Creator:
Regina Henschel
Created:
2011-06-03 12:12:41 UTC
Size:
38.47 KB
patch
obsolete
>--- Splines.cxx.original 2011-05-19 11:09:16.000000000 +0200 >+++ Splines.cxx 2011-06-03 20:49:57.187500000 +0200 >@@ -49,17 +49,6 @@ > namespace > { > >-template< typename T > >-struct lcl_EqualsFirstDoubleOfPair : ::std::binary_function< ::std::pair< double, T >, ::std::pair< double, T >, bool > >-{ >- inline bool operator() ( const ::std::pair< double, T > & rOne, const ::std::pair< double, T > & rOther ) >- { >- return ( ::rtl::math::approxEqual( rOne.first, rOther.first ) ); >- } >-}; >- >-//----------------------------------------------------------------------------- >- > typedef ::std::pair< double, double > tPointType; > typedef ::std::vector< tPointType > tPointVecType; > typedef tPointVecType::size_type lcl_tSizeType; >@@ -82,6 +71,16 @@ > double fY1FirstDerivation, > double fYnFirstDerivation ); > >+ >+ /** @descr creates an object that calculates cublic splines on construction >+ for the special case of periodic cubic spline >+ >+ @param rSortedPoints the points for which splines shall be calculated, >+ they need to be sorted in x values. First and last y value must be equal >+ */ >+ lcl_SplineCalculation( const tPointVecType & rSortedPoints); >+ >+ > /** @descr this function corresponds to the function splint in [1]. > > [1] Numerical Recipies in C, 2nd edition >@@ -101,8 +100,8 @@ > double m_fYpN; > > // these values are cached for performance reasons >- tPointVecType::size_type m_nKLow; >- tPointVecType::size_type m_nKHigh; >+ lcl_tSizeType m_nKLow; >+ lcl_tSizeType m_nKHigh; > double m_fLastInterpolatedValue; > > /** @descr this function corresponds to the function spline in [1]. >@@ -112,6 +111,22 @@ > Section 3.3, page 115 > */ > void Calculate(); >+ >+ /** @descr this function corresponds to the algoritm 4.76 in [2] and >+ theorem 5.3.7 in [3] >+ >+ [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen >+ Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004) >+ Section 4.10.2, page 175 >+ >+ [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur >+ Veranstaltung im WS 2007/2008 >+ Fachhochschule Aachen, 2009-09-19 >+ Numerik_01.pdf, downloaded 2011-04-19 via >+ http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191 >+ Section 5.3, page 129 >+ */ >+ void CalculatePeriodic(); > }; > > //----------------------------------------------------------------------------- >@@ -127,21 +142,32 @@ > m_nKHigh( rSortedPoints.size() - 1 ) > { > ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); >- >- // remove points that have equal x-values >- m_aPoints.erase( ::std::unique( m_aPoints.begin(), m_aPoints.end(), >- lcl_EqualsFirstDoubleOfPair< double >() ), >- m_aPoints.end() ); > Calculate(); > } > >+//----------------------------------------------------------------------------- >+ >+lcl_SplineCalculation::lcl_SplineCalculation( >+ const tPointVecType & rSortedPoints) >+ : m_aPoints( rSortedPoints ), >+ m_fYp1( 0.0 ), /*dummy*/ >+ m_fYpN( 0.0 ), /*dummy*/ >+ m_nKLow( 0 ), >+ m_nKHigh( rSortedPoints.size() - 1 ) >+{ >+ ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); >+ CalculatePeriodic(); >+} >+//----------------------------------------------------------------------------- >+ >+ > void lcl_SplineCalculation::Calculate() > { > if( m_aPoints.size() <= 1 ) > return; > > // n is the last valid index to m_aPoints >- const tPointVecType::size_type n = m_aPoints.size() - 1; >+ const lcl_tSizeType n = m_aPoints.size() - 1; > ::std::vector< double > u( n ); > m_aSecDerivY.resize( n + 1, 0.0 ); > >@@ -159,9 +185,9 @@ > ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 ); > } > >- for( tPointVecType::size_type i = 1; i < n; ++i ) >+ for( lcl_tSizeType i = 1; i < n; ++i ) > { >- ::std::pair< double, double > >+ tPointType > p_i = m_aPoints[ i ], > p_im1 = m_aPoints[ i - 1 ], > p_ip1 = m_aPoints[ i + 1 ]; >@@ -199,19 +225,164 @@ > // note: the algorithm in [1] iterates from n-1 to 0, but as size_type > // may be (usuall is) an unsigned type, we can not write k >= 0, as this > // is always true. >- for( tPointVecType::size_type k = n; k > 0; --k ) >+ for( lcl_tSizeType k = n; k > 0; --k ) > { > ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ]; > } > } > >+void lcl_SplineCalculation::CalculatePeriodic() >+{ >+ if( m_aPoints.size() <= 1 ) >+ return; >+ >+ // n is the last valid index to m_aPoints >+ const lcl_tSizeType n = m_aPoints.size() - 1; >+ >+ // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2], >+ // vector z in Rtranspose z = a and Dr=z in [2] >+ ::std::vector< double > u( n + 1, 0.0 ); >+ >+ // used for vector c in A*c=f and vector x in Ax=a in [2] >+ m_aSecDerivY.resize( n + 1, 0.0 ); >+ >+ // diagonal of matrix A, used index 1 to n >+ ::std::vector< double > Adiag( n + 1, 0.0 ); >+ >+ // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n] >+ ::std::vector< double > Aupper( n + 1, 0.0 ); >+ >+ // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n >+ ::std::vector< double > Ddiag( n+1, 0.0 ); >+ >+ // right column of matrix R, used index 1 to n-2 >+ ::std::vector< double > Rright( n-1, 0.0 ); >+ >+ // secondary diagonal of matrix R, used index 1 to n-1 >+ ::std::vector< double > Rupper( n, 0.0 ); >+ >+ if (n<4) >+ { >+ if (n==3) >+ { // special handling of three polynomials, that are four points >+ double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ; >+ double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ; >+ double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ; >+ double xDiff2p1 = xDiff2 + xDiff1; >+ double xDiff0p2 = xDiff0 + xDiff2; >+ double xDiff1p0 = xDiff1 + xDiff0; >+ double fFaktor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0); >+ double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0; >+ double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1; >+ double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2; >+ m_aSecDerivY[ 1 ] = fFaktor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2); >+ m_aSecDerivY[ 2 ] = fFaktor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0); >+ m_aSecDerivY[ 3 ] = fFaktor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1); >+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ]; >+ } >+ else if (n==2) >+ { >+ // special handling of two polynomials, that are three points >+ double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; >+ double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first; >+ double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1); >+ m_aSecDerivY[ 1 ] = fHelp ; >+ m_aSecDerivY[ 2 ] = -fHelp ; >+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ; >+ } >+ else >+ { >+ // should be handled with natural spline, periodic not possible. >+ } >+ } >+ else >+ { >+ double xDiff_i =1.0; // values are dummy; >+ double xDiff_im1 =1.0; >+ double yDiff_i = 1.0; >+ double yDiff_im1 = 1.0; >+ // fill matrix A and fill right side vector u >+ for( lcl_tSizeType i=1; i<n; ++i ) >+ { >+ xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first; >+ xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first; >+ yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1; >+ yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i; >+ Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i); >+ Aupper[ i ] = xDiff_i; >+ u [ i ] = 3 * (yDiff_i - yDiff_im1); >+ } >+ xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first; >+ xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; >+ yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1; >+ yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i; >+ Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i); >+ Aupper[ n ] = xDiff_i; >+ u [ n ] = 3 * (yDiff_i - yDiff_im1); >+ >+ // decomposite A=(R transpose)*D*R >+ Ddiag[1] = Adiag[1]; >+ Rupper[1] = Aupper[1] / Ddiag[1]; >+ Rright[1] = Aupper[n] / Ddiag[1]; >+ for( lcl_tSizeType i=2; i<=n-2; ++i ) >+ { >+ Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ]; >+ Rupper[ i ] = Aupper[ i ] / Ddiag[ i ]; >+ Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ]; >+ } >+ Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ]; >+ Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ]; >+ double fSum = 0.0; >+ for ( lcl_tSizeType i=1; i<=n-2; ++i ) >+ { >+ fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ]; >+ } >+ Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]! >+ >+ // solve forward (R transpose)*z=u, overwrite u with z >+ for ( lcl_tSizeType i=2; i<=n-1; ++i ) >+ { >+ u[ i ] -= u[ i-1 ]* Rupper[ i-1 ]; >+ } >+ fSum = 0.0; >+ for ( lcl_tSizeType i=1; i<=n-2; ++i ) >+ { >+ fSum += Rright[ i ] * u[ i ]; >+ } >+ u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ]; >+ >+ // solve forward D*r=z, z is in u, overwrite u with r >+ for ( lcl_tSizeType i=1; i<=n; ++i ) >+ { >+ u[ i ] = u[i] / Ddiag[ i ]; >+ } >+ >+ // solve backward R*x= r, r is in u >+ m_aSecDerivY[ n ] = u[ n ]; >+ m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ]; >+ for ( lcl_tSizeType i=n-2; i>=1; --i) >+ { >+ m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ]; >+ } >+ // periodic >+ m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ]; >+ } >+ >+ // adapt m_aSecDerivY for usage in GetInterpolatedValue() >+ for( lcl_tSizeType i = 0; i <= n ; ++i ) >+ { >+ m_aSecDerivY[ i ] *= 2.0; >+ } >+ >+} >+ > double lcl_SplineCalculation::GetInterpolatedValue( double x ) > { > DBG_ASSERT( ( m_aPoints[ 0 ].first <= x ) && > ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ), > "Trying to extrapolate" ); > >- const tPointVecType::size_type n = m_aPoints.size() - 1; >+ const lcl_tSizeType n = m_aPoints.size() - 1; > if( x < m_fLastInterpolatedValue ) > { > m_nKLow = 0; >@@ -221,7 +392,7 @@ > // first initialization is done in CTOR > while( m_nKHigh - m_nKLow > 1 ) > { >- tPointVecType::size_type k = ( m_nKHigh + m_nKLow ) / 2; >+ lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2; > if( m_aPoints[ k ].first > x ) > m_nKHigh = k; > else >@@ -255,63 +426,142 @@ > > //----------------------------------------------------------------------------- > >-//create knot vector for B-spline >-double* createTVector( sal_Int32 n, sal_Int32 k ) >-{ >- double* t = new double [n + k + 1]; >- for (sal_Int32 i=0; i<=n+k; i++ ) >- { >- if(i < k) >- t[i] = 0; >- else if(i <= n) >- t[i] = i-k+1; >+// helper methods for B-spline >+ >+// Create parameter t_0 to t_n using the centripetal method with a power of 0.5 >+bool createParameterT(const tPointVecType aUniquePoints, double* t) >+{ // precondition: no adjacent identical points >+ // postcondition: 0 = t_0 < t_1 < ... < t_n = 1 >+ bool bIsSuccessful = true; >+ const lcl_tSizeType n = aUniquePoints.size() - 1; >+ t[0]=0.0; >+ double dx = 0.0; >+ double dy = 0.0; >+ double fDiffMax = 1.0; //dummy values >+ double fDenominator = 0.0; // initialized for summing up >+ for (lcl_tSizeType i=1; i<=n ; ++i) >+ { // 4th root(dx^2+dy^2) >+ dx = aUniquePoints[i].first - aUniquePoints[i-1].first; >+ dy = aUniquePoints[i].second - aUniquePoints[i-1].second; >+ // scaling to avoid underflow or overflow >+ fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy); >+ if (fDiffMax == 0.0) >+ { >+ bIsSuccessful = false; >+ break; >+ } > else >- t[i] = n-k+2; >+ { >+ dx /= fDiffMax; >+ dy /= fDiffMax; >+ fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); >+ } > } >- return t; >-} >+ if (fDenominator == 0.0) >+ { >+ bIsSuccessful = false; >+ } >+ if (bIsSuccessful) >+ { >+ for (lcl_tSizeType j=1; j<=n ; ++j) >+ { >+ double fNumerator = 0.0; >+ for (lcl_tSizeType i=1; i<=j ; ++i) >+ { >+ dx = aUniquePoints[i].first - aUniquePoints[i-1].first; >+ dy = aUniquePoints[i].second - aUniquePoints[i-1].second; >+ fDiffMax = (abs(dx)>abs(dy)) ? abs(dx) : abs(dy); >+ // same as above, so should not be zero >+ dx /= fDiffMax; >+ dy /= fDiffMax; >+ fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); >+ } >+ t[j] = fNumerator / fDenominator; > >-//calculate left knot vector >-double TLeft (double x, sal_Int32 i, sal_Int32 k, const double *t ) >-{ >- double deltaT = t[i + k - 1] - t[i]; >- return (deltaT == 0.0) >- ? 0.0 >- : (x - t[i]) / deltaT; >+ } >+ // postcondition check >+ t[n] = 1.0; >+ double fPrevious = 0.0; >+ for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i) >+ { >+ if (fPrevious >= t[i]) >+ { >+ bIsSuccessful = false; >+ } >+ else >+ { >+ fPrevious = t[i]; >+ } >+ } >+ } >+ return bIsSuccessful; > } > >-//calculate right knot vector >-double TRight(double x, sal_Int32 i, sal_Int32 k, const double *t ) >-{ >- double deltaT = t[i + k] - t[i + 1]; >- return (deltaT == 0.0) >- ? 0.0 >- : (t[i + k] - x) / deltaT; >+void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u) >+{ // precondition: 0 = t_0 < t_1 < ... < t_n = 1 >+ for (lcl_tSizeType j = 0; j <= p; ++j) >+ { >+ u[j] = 0.0; >+ } >+ double fSum = 0.0; >+ for (lcl_tSizeType j = 1; j <= n-p; ++j ) >+ { >+ fSum = 0.0; >+ for (lcl_tSizeType i = j; i <= j+p-1; ++i) >+ { >+ fSum += t[i]; >+ } >+ u[j+p] = fSum / p ; >+ } >+ for (lcl_tSizeType j = n+1; j <= n+1+p; ++j) >+ { >+ u[j] = 1.0; >+ } > } > >-//calculate weight vector >-void BVector(double x, sal_Int32 n, sal_Int32 k, double *b, const double *t) >+void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN) > { >- sal_Int32 i = 0; >- for( i=0; i<=n+k; i++ ) >- b[i]=0; >+ // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero >+ double fRightFactor = 0.0; >+ double fLeftFactor = 0.0; > >- sal_Int32 i0 = (sal_Int32)floor(x) + k - 1; >- b [i0] = 1; >+ // initialize with indicator function degree 0 >+ rowN[p] = 1.0; // all others are zero > >- for( sal_Int32 j=2; j<=k; j++ ) >- for( i=0; i<=i0; i++ ) >- b[i] = TLeft(x, i, j, t) * b[i] + TRight(x, i, j, t) * b [i + 1]; >+ // calculate up to degree p >+ for (sal_uInt32 s = 1; s <= p; ++s) >+ { >+ // first element >+ fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] ); >+ // i-s "true index" - (i-p)"shift" = p-s >+ rowN[p-s] = fRightFactor * rowN[p-s+1]; >+ >+ // middle elements >+ for (sal_uInt32 j = s-1; j>=1 ; --j) >+ { >+ fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ; >+ fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] ); >+ // i-j "true index" - (i-p)"shift" = p-j >+ rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1]; >+ } >+ >+ // last element >+ fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] ); >+ // i "true index" - (i-p)"shift" = p >+ rowN[p] = fLeftFactor * rowN[p]; >+ } > } > > } // anonymous namespace > > //----------------------------------------------------------------------------- > >+// Calculates uniform parametric splines with subinterval length 1, >+// according ODF1.2 part 1, chapter 'chart interpolation'. > void SplineCalculater::CalculateCubicSplines( > const drawing::PolyPolygonShape3D& rInput > , drawing::PolyPolygonShape3D& rResult >- , sal_Int32 nGranularity ) >+ , sal_uInt32 nGranularity ) > { > DBG_ASSERT( nGranularity > 0, "Granularity is invalid" ); > >@@ -319,7 +569,7 @@ > rResult.SequenceY.realloc(0); > rResult.SequenceZ.realloc(0); > >- sal_Int32 nOuterCount = rInput.SequenceX.getLength(); >+ sal_uInt32 nOuterCount = rInput.SequenceX.getLength(); > if( !nOuterCount ) > return; > >@@ -327,30 +577,23 @@ > rResult.SequenceY.realloc(nOuterCount); > rResult.SequenceZ.realloc(nOuterCount); > >- for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) >+ for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) > { > if( rInput.SequenceX[nOuter].getLength() <= 1 ) > continue; //we need at least two points > >- sal_Int32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 >+ sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 > const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); > const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); > const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); > >- // #i13699# The curve gets a parameter and then for each coordinate a >- // separate spline will be calculated using the parameter as first argument >- // and the point coordinate as second argument. Therefore the points need >- // not to be sorted in its x-coordinates. The parameter is sorted by >- // construction. >- > ::std::vector < double > aParameter(nMaxIndexPoints+1); > aParameter[0]=0.0; >- for( sal_Int32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ ) >+ for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ ) > { >- // The euclidian distance leads to curve loops for functions having single extreme points >- // use increment of 1 instead > aParameter[nIndex]=aParameter[nIndex-1]+1; > } >+ > // Split the calculation to X, Y and Z coordinate > tPointVecType aInputX; > aInputX.resize(nMaxIndexPoints+1); >@@ -358,7 +601,7 @@ > aInputY.resize(nMaxIndexPoints+1); > tPointVecType aInputZ; > aInputZ.resize(nMaxIndexPoints+1); >- for (sal_Int32 nN=0;nN<=nMaxIndexPoints; nN++ ) >+ for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ ) > { > aInputX[ nN ].first=aParameter[nN]; > aInputX[ nN ].second=pOldX[ nN ]; >@@ -373,16 +616,20 @@ > double fXDerivation; > double fYDerivation; > double fZDerivation; >+ lcl_SplineCalculation* aSplineX; >+ lcl_SplineCalculation* aSplineY; >+ // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in >+ // a data series are equal. No spline calculation needed, but copy >+ // coordinate to output >+ > if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] && > pOldY[ 0 ] == pOldY[nMaxIndexPoints] && >- pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] ) >- { >- // #i101050# avoid a corner in closed lines, which are smoothed by spline >- // This derivation are special for parameter of kind 0,1,2,3... If you >- // change generating parameters (see above), then adapt derivations too.) >- fXDerivation = 0.5 * (pOldX[1]-pOldX[nMaxIndexPoints-1]); >- fYDerivation = 0.5 * (pOldY[1]-pOldY[nMaxIndexPoints-1]); >- fZDerivation = 0.5 * (pOldZ[1]-pOldZ[nMaxIndexPoints-1]); >+ pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] && >+ nMaxIndexPoints >=2 ) >+ { // periodic spline >+ aSplineX = new lcl_SplineCalculation( aInputX) ; >+ aSplineY = new lcl_SplineCalculation( aInputY) ; >+ // aSplineZ = new lcl_SplineCalculation( aInputZ) ; > } > else // generate the kind "natural spline" > { >@@ -391,10 +638,10 @@ > fXDerivation = fInfty; > fYDerivation = fInfty; > fZDerivation = fInfty; >+ aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation ); >+ aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation ); >+ // aSplineZ = new lcl_SplineCalculation( aInputZ, fZDerivation, fZDerivation ); > } >- lcl_SplineCalculation aSplineX( aInputX, fXDerivation, fXDerivation ); >- lcl_SplineCalculation aSplineY( aInputY, fYDerivation, fYDerivation ); >- lcl_SplineCalculation aSplineZ( aInputZ, fZDerivation, fZDerivation ); > > // fill result polygon with calculated values > rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1); >@@ -405,13 +652,13 @@ > double* pNewY = rResult.SequenceY[nOuter].getArray(); > double* pNewZ = rResult.SequenceZ[nOuter].getArray(); > >- sal_Int32 nNewPointIndex = 0; // Index in result points >+ sal_uInt32 nNewPointIndex = 0; // Index in result points > // needed for inner loop > double fInc; // step for intermediate points >- sal_Int32 nj; // for loop >+ sal_uInt32 nj; // for loop > double fParam; // a intermediate parameter value > >- for( sal_Int32 ni = 0; ni < nMaxIndexPoints; ni++ ) >+ for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ ) > { > // given point is surely a curve point > pNewX[nNewPointIndex] = pOldX[ni]; >@@ -425,9 +672,10 @@ > { > fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) ); > >- pNewX[nNewPointIndex]=aSplineX.GetInterpolatedValue( fParam ); >- pNewY[nNewPointIndex]=aSplineY.GetInterpolatedValue( fParam ); >- pNewZ[nNewPointIndex]=aSplineZ.GetInterpolatedValue( fParam ); >+ pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam ); >+ pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam ); >+ // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam ); >+ pNewZ[nNewPointIndex] = pOldZ[ni]; > nNewPointIndex++; > } > } >@@ -435,23 +683,39 @@ > pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints]; > pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints]; > pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints]; >+ delete aSplineX; >+ delete aSplineY; >+ // delete aSplineZ; > } > } > >+ >+// The implementation follows closely ODF1.2 spec, chapter chart:interpolation >+// using the same names as in spec as far as possible, without prefix. >+// More details can be found on >+// Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes >+// Unit 9: Interpolation and Approximation/Curve Global Interpolation >+// Department of Computer Science, Michigan Technological University >+// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/ >+// [last called 2011-05-20] > void SplineCalculater::CalculateBSplines( > const ::com::sun::star::drawing::PolyPolygonShape3D& rInput > , ::com::sun::star::drawing::PolyPolygonShape3D& rResult >- , sal_Int32 nGranularity >- , sal_Int32 nDegree ) >+ , sal_uInt32 nResolution >+ , sal_uInt32 nDegree ) > { >- // #issue 72216# >- // k is the order of the BSpline, nDegree is the degree of its polynoms >- sal_Int32 k = nDegree + 1; >+ // nResolution is ODF1.2 file format attribut chart:spline-resolution and >+ // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition. >+ // nDegree is ODF1.2 file format attribut chart:spline-order and >+ // ODF1.2 spec variable p >+ DBG_ASSERT( nResolution > 1, "resolution 1 is equivalent to attribut none" ); >+ DBG_ASSERT( nDegree >= 1, "degree of polynomials must be positive"); >+ sal_uInt32 p = nDegree; >+ >+ rResult.SequenceX.realloc(0); >+ rResult.SequenceY.realloc(0); >+ rResult.SequenceZ.realloc(0); > >- rResult.SequenceX.realloc(0); >- rResult.SequenceY.realloc(0); >- rResult.SequenceZ.realloc(0); >- > sal_Int32 nOuterCount = rInput.SequenceX.getLength(); > if( !nOuterCount ) > return; // no input >@@ -463,74 +727,257 @@ > for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) > { > if( rInput.SequenceX[nOuter].getLength() <= 1 ) >- continue; // need at least 2 control points >- >- sal_Int32 n = rInput.SequenceX[nOuter].getLength()-1; // maximum index of control points >- >- double fCurveparam =0.0; // parameter for the curve >- // 0<= fCurveparam < fMaxCurveparam >- double fMaxCurveparam = 2.0+ n - k; >- if (fMaxCurveparam <= 0.0) >- return; // not enough control points for desired spline order >- >- if (nGranularity < 1) >- return; //need at least 1 line for each part beween the control points >+ continue; // need at least 2 points, next piece of the series > >+ // Copy input to vector of points and remove adjacent double points. The >+ // Z-coordinate is equal for all points in a series and holds the depth >+ // in 3D mode, simple copying is enough. >+ lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 > const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); > const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); > const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); >- >- // keep this amount of steps to go well with old version >- sal_Int32 nNewSectorCount = nGranularity * n; >- double fCurveStep = fMaxCurveparam/static_cast< double >(nNewSectorCount); >+ double fZCoordinate = pOldZ[0]; >+ tPointVecType aPointsIn; >+ aPointsIn.resize(nMaxIndexPoints+1); >+ for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i ) >+ { >+ aPointsIn[ i ].first = pOldX[i]; >+ aPointsIn[ i ].second = pOldY[i]; >+ } >+ aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()), >+ aPointsIn.end() ); > >- double *b = new double [n + k + 1]; // values of blending functions >+ // n is the last valid index to the reduced aPointsIn >+ // There are n+1 valid data points. >+ const lcl_tSizeType n = aPointsIn.size() - 1; >+ if (n < 1 || p > n) >+ continue; // need at least 2 points, degree p needs at least n+1 points >+ // next piece of series > >- const double* t = createTVector(n, k); // knot vector >+ double* t = new double [n+1]; >+ if (!createParameterT(aPointsIn, t)) >+ { >+ delete[] t; >+ continue; // next piece of series >+ } > >- rResult.SequenceX[nOuter].realloc(nNewSectorCount+1); >- rResult.SequenceY[nOuter].realloc(nNewSectorCount+1); >- rResult.SequenceZ[nOuter].realloc(nNewSectorCount+1); >- double* pNewX = rResult.SequenceX[nOuter].getArray(); >- double* pNewY = rResult.SequenceY[nOuter].getArray(); >- double* pNewZ = rResult.SequenceZ[nOuter].getArray(); >- >- // variables needed inside loop, when calculating one point of output >- sal_Int32 nPointIndex =0; //index of given contol points >- double fX=0.0; >- double fY=0.0; >- double fZ=0.0; //coordinates of a new BSpline point >+ lcl_tSizeType m = n + p + 1; >+ double* u = new double [m+1]; >+ createKnotVector(n, p, t, u); > >- for(sal_Int32 nNewSector=0; nNewSector<nNewSectorCount; nNewSector++) >- { // in first looping fCurveparam has value 0.0 >- >- // Calculate the values of the blending functions for actual curve parameter >- BVector(fCurveparam, n, k, b, t); >- >- // output point(fCurveparam) = sum over {input point * value of blending function} >- fX = 0.0; >- fY = 0.0; >- fZ = 0.0; >- for (nPointIndex=0;nPointIndex<=n;nPointIndex++) >+ // The matrix N contains the B-spline basis functions applied to parameters. >+ // In each row only p+1 adjacent elements are non-zero. The starting >+ // column in a higher row is equal or greater than in the lower row. >+ // To store this matrix the non-zero elements are shifted to column 0 >+ // and the amount of shifting is remembered in an array. >+ double** aMatN = new double*[n+1]; >+ for (lcl_tSizeType row = 0; row <=n; ++row) >+ { >+ aMatN[row] = new double[p+1]; >+ for (sal_uInt32 col = 0; col <= p; ++col) >+ aMatN[row][col] = 0.0; >+ } >+ lcl_tSizeType* aShift = new lcl_tSizeType[n+1]; >+ aMatN[0][0] = 1.0; //all others are zero >+ aShift[0] = 0; >+ aMatN[n][0] = 1.0; >+ aShift[n] = n; >+ for (lcl_tSizeType k = 1; k<=n-1; ++k) >+ { // all basis functions are applied to t_k, >+ // results are elements in row k in matrix N >+ >+ // find the one interval with u_i <= t_k < u_(i+1) >+ // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1 >+ lcl_tSizeType i = p; >+ while (!(u[i] <= t[k] && t[k] < u[i+1])) > { >- fX +=pOldX[nPointIndex]*b[nPointIndex]; >- fY +=pOldY[nPointIndex]*b[nPointIndex]; >- fZ +=pOldZ[nPointIndex]*b[nPointIndex]; >+ ++i; > } >- pNewX[nNewSector] = fX; >- pNewY[nNewSector] = fY; >- pNewZ[nNewSector] = fZ; >- >- fCurveparam += fCurveStep; //for next looping >- } >- // add last control point to BSpline curve >- pNewX[nNewSectorCount] = pOldX[n]; >- pNewY[nNewSectorCount] = pOldY[n]; >- pNewZ[nNewSectorCount] = pOldZ[n]; > >+ // index in reduced matrix aMatN = (index in full matrix N) - (i-p) >+ aShift[k] = i - p; >+ >+ applyNtoParameterT(i, t[k], p, u, aMatN[k]); >+ } // next row k >+ >+ // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn >+ // aPointsIn is overwritten with C. >+ // Gaussian elimination is possible without pivoting, see reference >+ lcl_tSizeType r = 0; // true row index >+ lcl_tSizeType c = 0; // true column index >+ double fDivisor = 1.0; // used for diagonal element >+ double fEliminate = 1.0; // used for the element, that will become zero >+ double fHelp; >+ tPointType aHelp; >+ lcl_tSizeType nHelp; // used in triangle change >+ bool bIsSuccessful = true; >+ for (c = 0 ; c <= n && bIsSuccessful; ++c) >+ { >+ // search for first non-zero downwards >+ r = c; >+ while ( aMatN[r][c-aShift[r]] == 0 && r < n) >+ { >+ ++r; >+ } >+ if (aMatN[r][c-aShift[r]] == 0.0) >+ { >+ // Matrix N is singular, although this is mathematically impossible >+ bIsSuccessful = false; >+ } >+ else >+ { >+ // exchange total row r with total row c if necessary >+ if (r != c) >+ { >+ for ( sal_uInt32 i = 0; i <= p ; ++i) >+ { >+ fHelp = aMatN[r][i]; >+ aMatN[r][i] = aMatN[c][i]; >+ aMatN[c][i] = fHelp; >+ } >+ aHelp = aPointsIn[r]; >+ aPointsIn[r] = aPointsIn[c]; >+ aPointsIn[c] = aHelp; >+ nHelp = aShift[r]; >+ aShift[r] = aShift[c]; >+ aShift[c] = nHelp; >+ } >+ >+ // divide row c, so that element(c,c) becomes 1 >+ fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above >+ for (sal_uInt32 i = 0; i <= p; ++i) >+ { >+ aMatN[c][i] /= fDivisor; >+ } >+ aPointsIn[c].first /= fDivisor; >+ aPointsIn[c].second /= fDivisor; >+ >+ // eliminate forward, examine row c+1 to n-1 (worst case) >+ // stop if first non-zero element in row has an higher column as c >+ // look at nShift for that, elements in nShift are equal or increasing >+ for ( r = c+1; aShift[r]<=c && r < n; ++r) >+ { >+ fEliminate = aMatN[r][0]; >+ if (fEliminate != 0.0) // else accidentally zero, nothing to do >+ { >+ for (sal_uInt32 i = 1; i <= p; ++i) >+ { >+ aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i]; >+ } >+ aMatN[r][p]=0; >+ aPointsIn[r].first -= fEliminate * aPointsIn[c].first; >+ aPointsIn[r].second -= fEliminate * aPointsIn[c].second; >+ ++aShift[r]; >+ } >+ } >+ } >+ }// upper triangle form is reached >+ if( bIsSuccessful) >+ { >+ // eliminate backwards, begin with last column >+ for (lcl_tSizeType c = n; c >= 1; --c ) >+ { >+ // In row c the diagonal element(c,c) == 1 and all elements left from >+ // diagonal are zero and do not influence other rows. >+ // Full matrix N has semibandwidth < p, therefore element(r,c) is >+ // zero, if abs(r-c)>=p. abs(r-c)=c-r, because r<c. >+ r = c - 1; >+ while ( r !=0 && c-r < p ) >+ { >+ fEliminate = aMatN[r][ c - aShift[r] ]; >+ if ( fEliminate != 0.0) // else element is accidentically zero, no action needed >+ { >+ // row r -= fEliminate * row c only relevant for right side >+ aMatN[r][c - aShift[r]] = 0.0; >+ aPointsIn[r].first -= fEliminate * aPointsIn[c].first; >+ aPointsIn[r].second -= fEliminate * aPointsIn[c].second; >+ } >+ --r; >+ } >+ } >+ } // aPointsIn contains the control points now. >+ if (bIsSuccessful) >+ { >+ // calculate the intermediate points according given resolution >+ // using deBoor-Cox algorithm >+ lcl_tSizeType nNewSize = nResolution * n + 1; >+ rResult.SequenceX[nOuter].realloc(nNewSize); >+ rResult.SequenceY[nOuter].realloc(nNewSize); >+ rResult.SequenceZ[nOuter].realloc(nNewSize); >+ double* pNewX = rResult.SequenceX[nOuter].getArray(); >+ double* pNewY = rResult.SequenceY[nOuter].getArray(); >+ double* pNewZ = rResult.SequenceZ[nOuter].getArray(); >+ pNewX[0] = aPointsIn[0].first; >+ pNewY[0] = aPointsIn[0].second; >+ pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal >+ pNewX[nNewSize -1 ] = aPointsIn[n].first; >+ pNewY[nNewSize -1 ] = aPointsIn[n].second; >+ pNewZ[nNewSize -1 ] = fZCoordinate; >+ double* aP = new double[m+1]; >+ lcl_tSizeType nLow = 0; >+ for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex) >+ { >+ for (sal_uInt32 nResolutionStep = 1; >+ nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution); >+ ++nResolutionStep) >+ { >+ lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep; >+ double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution; >+ >+ // get index nLow, so that u[nLow]<= ux < u[nLow +1] >+ // continue from previous nLow >+ while ( u[nLow] <= ux) >+ { >+ ++nLow; >+ } >+ --nLow; >+ >+ // x-coordinate >+ for (lcl_tSizeType i = nLow-p; i <= nLow; ++i) >+ { >+ aP[i] = aPointsIn[i].first; >+ } >+ for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) >+ { >+ double fFactor = 0.0; >+ for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i) >+ { >+ fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); >+ aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; >+ } >+ } >+ pNewX[nNewIndex] = aP[nLow]; >+ >+ // y-coordinate >+ for (lcl_tSizeType i = nLow - p; i <= nLow; ++i) >+ { >+ aP[i] = aPointsIn[i].second; >+ } >+ for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) >+ { >+ double fFactor = 0.0; >+ for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i) >+ { >+ fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); >+ aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; >+ } >+ } >+ pNewY[nNewIndex] = aP[nLow]; >+ pNewZ[nNewIndex] = fZCoordinate; >+ } >+ } >+ delete[] aP; >+ } >+ delete[] aShift; >+ for (lcl_tSizeType row = 0; row <=n; ++row) >+ { >+ delete[] aMatN[row]; >+ } >+ delete[] aMatN; >+ delete[] u; > delete[] t; >- delete[] b; >- } >+ >+ } // next piece of the series > } > > //.............................................................................
You cannot view the attachment while viewing its details because your browser does not support IFRAMEs.
View the attachment on a separate page
.
View Attachment As Raw
Actions:
View
Attachments on
bug 37889
: 47488 |
47489
|
47490
|
47491